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1. Introduction

The AdS/CFT correspondence [1 – 4] is an explicit realization of the holographic princi-

ple [5, 6]. It is the best understood example of a gauge/gravity duality and offers promising

opportunities to tackle and understand some of the most difficult problems in theoretical

high energy physics such as the quantum properties of spacetime and the confinement

problem in gauge theory.

Owing to different motivations, various generalizations of the dualities have been con-

sidered. We note in particular the ones [7, 8] for noncommutative supersymmetric Yang-

Mills and [9] where the duality is characterized by a very interesting extended action of

SL(2, Z) [11, 10]. Both of these deformations of the original AdS/CFT duality are motivated

by having a deformed ∗-product on the field theory side. In the first case, the spacetime

is deformed by a Moyal product induced by a constant NSNS B-field which lives on the

worldvolume of the D3-branes, while in the second case, the product between fields carry-

ing different U(1) charges is deformed due to a nontrivial twist in the TsT-transformation.

In this regard, it is natural and of interest to construct a gauge/gravity duality for the
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non-anticommutative supersymmetric gauge theory [12, 13] where the fermionic coordi-

nates of the superspace are deformed with a non-anticommutative ∗-product.1 The goal of

this paper is to construct the gauge/gravity duality for the non-anticommutative deformed

N = 4 supersymmetric Yang-Mills theory.

Non-anticommutative supersymmetric theories preserve a chiral fraction of the super-

symmetries. That this is possible is because these theories are defined in Euclidean space

and the left and right chiral sectors are not related by a complex conjugation. Due to

their different supersymmetric structure, a priori these theories could have quite differ-

ent quantum properties from their undeformed cousins. Although power counting non-

renormalizable, nevertheless they are renormalizable [15, 16] basically because in a Feyn-

man diagram computation, the Hermitian conjugate partners which would be needed to

generate divergent counter terms are missing. Moreover due to the existence of a super-

space formulation, non-renormalization theorems exist as usual. In addition to having a

very interesting mechanism of supersymmetry breaking, non-anticommutative supersym-

metric theories also possess interesting non-perturbative properties [17].

In the original Maldacena AdS/CFT correspondence, the amount of preserved super-

symmetry is maximal. Since holography is believed to be a generic property of quantum

gravity, it is interesting to understand how gauge/gravity duality works in a less or non-

supersymmetric setting, especially when the supersymmetry is preserved in a non-standard

manner. This is another motivation for our goal.

Non-anticommutativity in string theory [18 – 20] was first discovered by Ooguri and

Vafa [18], who observed that a self-dual graviphoton field strength Cµν induces a defor-

mation in the fermionic part of the 4-dimensional superspace. Seiberg proposed another

type of deformation which imposes commutativity in the chiral coordinates [12]. The de-

formation keeps N = 1/2 supersymmetry in the case of simple supersymmetry, or more

specifically, N = (1/2, 0) of the original N = (1/2, 1/2) supersymmetry 2. The deformed

superspace has algebra

{θα, θβ} = Cαβ, (1.1)

{θ̄α̇, θ̄β̇} = {θα, θ̄β̇} = 0, (1.2)

[yµ, yν ] = [yµ, θα] = [yµ, θ̄α̇] = 0, (1.3)

where yµ = xµ + iθασµ
αα̇θ̄α̇. The deformation is described by the constant Cαβ =

Cµν(σµν)αβ .

The generalization to the extended supersymmetry is immediate. For the N = 2 =

(1, 1) case, the deformation generalizes to

{θαi, θβj} = Cαβij, i = 1, 2, (1.4)

1Non-anticommutative N = 4 super Yang-Mills theory can also be realized through deforming the

constraint equations defined on the Euclidean superspace R4|16 [14].
2In Euclidean space, the Grassmannian-odd coordinates θα and θ̄α̇ are not related by complex conjuga-

tion, therefore it is more convenient to denote the simple N = 1 supersymmetry as N = (1/2, 1/2). For

the more general extended case, one can have N = (n/2, m/2) supersymmetry where n, m are the number

of left and right chiral spinorial supersymmetry generators.
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with all the other (anti)commutative relations remaining undeformed. The deformation

parameter Cαβij obviously satisfies Cαβij = Cβαji. The deformation parameter can be

decomposed into irreducible parts [21, 22]

Cαβij = ǫαβǫijI + C(αβ)(ij). (1.5)

The deformation described by the first term is called the singlet deformation. It preserves

Euclidean SO(4) invariance and SU(2) R-symmetry, and breaks N = (1, 1) supersymmetry

down to N = (1, 0). The singlet deformation can be obtained from string theory in

a constant RR scalar background [23]. The deformation described by the second term

in (1.5) is called the non-singlet deformation. It retains N = (1, 0) supersymmetry for

generic Cαβij. However for particular deformation parameters such that

Cαβij = Cαβbij (1.6)

and with det b = 0, the preserved supersymmetry is enhanced to N = (1, 1/2) [21].

The non-singlet deformation can be obtained from string theory in a constant RR 5-

form background [23 – 25]. N = 4 lightcone superspace could be defined. However non-

anticommutative deformations of it have not been considered.

The non-anticommutative deformation (1.6) can be obtained from string theory in a

particular RR 5-form background of the form [24, 25]

Fµνabc = fµνgabc, (1.7)

where µ, ν = 0, 1, 2, 3 denote the 4-dimensional indices and a, b, c,= 4, . . . , 9 are the indices

of the transverse space. This 5-form is self-dual both in the 4-spacetime directions and in

the transverse 6 dimensions

fµν =
1

2!
ǫµνρσfρσ, gabc =

−i

3!
ǫabcdefgdef . (1.8)

In other words, the RR 5-form has the non-vanishing components Fµνabc and satisfies the

“double self-duality” condition

Fµνabc =
1

2!
ǫµνρλFρλabc,

Fµνabc =
−i

3!
ǫabcdefFµνdef . (1.9)

Note that gabc and hence the RR 5-form is necessarily complex since we are dealing with

Euclidean signature.

The action for the non-anticommutative SYM theory can be obtained using the super-

space construction. For the deformed N = (1/2, 1/2) superspace, see [12] for pure SYM

and [26] for SYM theory with matter. For the deformed N = (1, 1) case, one may use har-

monic superspace. See [27, 28, 23, 29] for the case with singlet deformation, and [27, 30 – 32]

for the non-singlet deformation. It can also be obtained from string theory as the world-

volume action of D3-branes. More specifically, the pure SYM action with N = (1/2, 0) or

N = (1, 0) supersymmetry can be obtained as the worldvolume action of D3-branes in a
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orbifold with constant graviphoton background [33, 24]. Deformations of the N = 4 SYM

action with N = (1/2, 0) or N = (1, 0) supersymmetry can be obtained as the worldvol-

ume action of D3-branes in a specific configuration of RR 5-form flux [25]. In this paper

we will be interested in constructing a gauge/gravity duality for the non-anticommutative

deformed N = 4 SYM theories with N = (1/2, 0) and N = (1, 0) supersymmetry.

The paper is organized as follows. In section 2, we present the construction of the

non-anticommutative deformed N = 4 SYM theories with N = (1/2, 0) and N = (1, 0)

supersymmetry as the worldvolume action of D3-branes with a particular configuration of

RR 5-form flux. In section 3, we realize the configurations as intersecting brane systems

and obtain the supergravity duals of these non-anticommutative deformed N = 4 gauge

theories. In section 4, we focus on the theory with N = (1, 0) supersymmetry and analyse

the duality. In particular we perform a standard bulk-to-boundary analysis to extract the

two point correlation function for the field theory. We find that the deformation modifies

only the overall coefficient, but leaves the form of the two-point function unchanged. This

implies that there exists a sector of BPS operators whose dimensions are unmodified by

the deformation.

2. The non-anticommutative deformations of the N = 4 SYM

2.1 D3-brane realization of N = 4 SYM

Consider N D3-branes in the 0123-directions. The Lorentz group SO(10) is decom-

posed into SO(4) × SO(6) and the spin fields can be decomposed as (SαSA, Sα̇SA) and

(S̃β S̃B , S̃β̇S̃B) where Sα, S̃α and Sα̇, S̃α̇ (α, α̇ = 1, 2) are four dimensional Weyl spinors

and SA, S̃A and SA, S̃A (A = 1, 2, 3, 4) are six-dimensional Weyl spinors. The presence of a

constant RR background can be described using the RR vertex operator. In the (−1
2 ,−1

2 )

picture, the RR vertex operator takes the form

VF = (2πα)3/2S̃TCFSe−φ/2e−φ̃/2 (2.1)

where F :=
∑

p Fµ1···µp+1
Γµ1···µp+1/p! and C is the charge conjugation matrix 3. Decompos-

ing the spinor indices with respect to SO(4) × SO(6), we have

VF = (2πα)3/2FαβABSαSAS̃βS̃Be−φ/2e−φ̃/2 + · · · , (2.3)

where · · · denotes contributions from the components of F other than FαβAB . Due to

their different tensor structure, these components will not be relevant for our discussion.

To obtain the tensor structure of the deformation relations (1.1) or (1.4), it is necessary

to consider a configuration of RR fields such that the only non-vanishing components are

3F and Fµ1···µp+1
are of dimension [L]−2 here. This is different from the normal dimension of [L]−1 for

the RR gauge field strength in supergravity theory

S = (2κ2
10)

−1

Z

d10x
√

g(R − 1

2
F 2). (2.2)
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the symmetric ones F (αβ)(AB). Here (αβ), (AB) represent symmetrization of the indices.

This can be achieved by turning on the RR 5-form configuration (1.7), (1.8). As a result

FαβAB = fµνgabc(σ
µν)αβ(Σabc)AB, (2.4)

where

σµν :=
1

4
(σµσ̄ν − σν σ̄µ), Σabc := Σ[aΣ

b
Σc] (2.5)

and they are self-dual:

σµν =
1

2!
ǫµνρλσρλ, Σabc =

i

3!
ǫabcdefΣdef , (2.6)

in which σµ, σ̄µ and Σa, Σ
a

are gamma matrices for the 4-dimensional and the 6-dimensional

spaces; one example of the basis is given in appendix.

The quantization of the string worldsheet coupled to the RR-fields leads to the non-

anticommutative relations (1.1) and (1.4) [18 – 20, 23], and one expects the D3-brane world-

volume action to possess supersymmetry that is carried by the deformed superspace. The

SYM action on the worldvolume of the D3-branes in the presence of a constant RR 5-form

flux F (αβ)(AB) satisfying the double self-dual condition (1.9) was computed in [25] using

string perturbation theory. The deformation is determined by the parameters

CαβAB := (2πα′)3/2FαβAB , (2.7)

which are kept fixed in the α′ → 0 limit. The action was computed up to the first order in

F . The worldvolume action possess N = (1/2, 0) supersymmetry when FαβAB is of rank

one in the (A,B)-space [25]. When it is of rank two in the (A,B)-space, one expects the

worldvolume action to have N = (1, 0) supersymmetry. An alternative way to construct

the deformed supersymmetric action is to use deformed N = (1, 1) harmonic superspace.

2.2 Non-anticommutative SYM with N = (1, 0) supersymmetry

2.2.1 RR-flux configuration for N = (1, 0) supersymmetry

To introduce a deformation to the N = (1, 1) superspace, the RR-5 form FαβAB should

be non-vanishing only for a 2 × 2 sub-block of the indices for A,B. This can be achieved

with the following configuration of RR 5-form:

F01456 = −iF01789 = F23456 = −iF23789 = c,

F01786 = −iF01459 = F23786 = −iF23459 = c,
(2.8)

where

c := F01456 (2.9)

is a constant. The first or the second line of (2.8) is respectively a minimal configura-

tion which satisfies (1.7), (1.8). By having this particular combination of these minimal

configurations, F is given by

FαβAB = 24c(σ01 + σ23)αβ(Σ456 + iΣ459)AB

= 24ic(τ3)αβMAB (2.10)
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and

M := Σ456 + iΣ459. (2.11)

To proceed further, one needs an explicit representation of the Σ-matrices. For ex-

ample, one can identify the Σ-matrices here with the canonical choice of Σ-matrices (A.6)

given in the appendix. For example if we take

Σ6,9,4,5,7,8 =
(
Σ4,5,6,7,8,9

)
appendix

, (2.12)

then

M = 2i

(
τ1 0

0 0

)
:= M0, (2.13)

which is of rank 2. We remark that a different identification of the Σ-matrices gives a

different M that is related to (2.13) by a bi-unitary transformation

M = Ṽ M0V, (2.14)

where Ṽ = V T , V are unitary. The transformation is bi-unitary since in general Ṽ V 6= 1.

For example, for the identification

Σ6,9,4,5,7,8 =
(
Σ4,8,6,7,5,9

)
appendix

, (2.15)

we have

M = V T 2i

(
τ1 0

0 0

)
V, (2.16)

with

V =
1√
2

(
τ1 −τ2

−τ2 τ1

)
. (2.17)

It is

V T V = −V V T = −i

(
0 τ3

τ3 0

)
6= 1 (2.18)

and so the transformation (2.14) is not unitary, but a bi-unitary one. We note that the

vertex operator with M given by (2.14) is equivalent to the one with M = M0 under a

change of basis for the spin field SA, S̃A

S → V S, S̃ → V S̃. (2.19)

Thus we have shown that by turning on the constant RR 5-form field (2.8), FαβAB takes

the factorized form (1.6) with det b 6= 0, i.e. it is of rank 2 with respect to the A,B indices.

2.2.2 Harmonic superspace and non-anticommutative SYM

Given the non-anticommutative relation (1.4), the deformed N = 4 action on the worldvol-

ume of the D3-branes can be obtained as a supersymmetric action for the gauge superfield

and hypermultiplet superfield of deformed harmonic superspace. Let us first give a brief
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introduction to harmonic superspace [35]. For a comprehensive review, we refer the reader

to [36].

Let (xµ, θα
i , θ̄α̇i) be the coordinates of the N = (1, 1) superspace, where µ = 0, 1, 2, 3

are the spacetime indices, α, α̇ = 1, 2 spinor indices and i = 1, 2 are the indices of the

SU(2) R-symmetry. The harmonic superspace is supplemented by the harmonic variables

u±i which form an SU(2) matrix:

ui+u−i = 1, u+iu+
i = u−iu−i = 0,

ũ+i = u−i . (2.20)

Here ˜ is the standard conjugation acting on the harmonic superspace. Its action on the

other coordinates of the superspace is

x̃µ
A = xµ

A, θ̃±α = εαβθ±β, ˜̄θ±α̇ = εα̇β̇ θ̄±β̇, (2.21)

where

θ±α := u±i θi
α, θ̄±α̇ := u±i θ̄i

α̇,

xµ
A = xµ − i(θ+σµθ̄− + θ−σµθ̄+) (2.22)

is the analytic basis of the harmonic superspace. And as a result we have the condition on

the parameters deforming the N = (1, 1) superspace:

C̃αβij = Cαβij. (2.23)

Using these variables, one can introduce the harmonic projection of the supercovariant

derivatives

D±α = u±i Di
α, D̄±α = u±i D̄i

α. (2.24)

Instead of chiral superfields, one considers analytic superfields in harmonic superspace.

They satisfy D+
α Φ = D̄+

α̇ Φ = 0. The supercharges and supercovariant derivatives take the

form

Q+
α =

∂

∂θ−α
− 2iσµ

αα̇θ̄+α̇ ∂

∂xµ
A

, Q−α = − ∂

∂θ+α

Q̄+
α̇ =

∂

∂θ̄−α̇
+ 2iθ+ασµ

αα̇

∂

∂xµ
A

, Q̄−α̇ = − ∂

∂θ̄+α̇
,

D+
α =

∂

∂θ−α
, D−α = − ∂

∂θ+α
+ 2iσµ

αα̇θ̄−α̇ ∂

∂xµ
A

,

D
+
α̇ =

∂

∂θ̄−α̇
, D

−

α̇ = − ∂

∂θ̄+α̇
− 2iθ−ασµ

αα̇

∂

∂xµ
A

, (2.25)

in terms of which the condition for the analytic superfield can be solved easily and is of

the form

Φ = Φ(xµ
A, θ+, θ̄+, u). (2.26)

One can expand the analytic superfield in θ and obtain a finite expansion with coefficients

being functions of xA and u. Each θ-component can be further expanded in terms of

– 7 –
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symmetrized products of u+ and u−. This second expansion is infinite and so each analytic

superfield contains an infinite number of component fields.

It is convenient to introduce covariant derivatives with respect to u± compatible with

the defining relations (2.20)

D++ = u+i ∂

∂u−i
, D−− = u−i ∂

∂u+i
,

D0 = u+i ∂

∂u+i
− u−i ∂

∂u−i
. (2.27)

The operator D0 measures the U(1) charges of the harmonics u±. A function of charge q

satisfies

D0φ(q) = qφ(q) (2.28)

and admits the expansion (here q ≥ 0; for q < 0 there is an analogous formula)

φ(q)(u) =
∞∑

n=0

φ(i1···iq+nj1···jn) u+
(i1

· · · u+
iq+n

u−j1 · · · u
−

jn). (2.29)

The coefficients φi1···jm are irreducible SU(2) tensors with isospin (n + m)/2.

The non-anticommutative N = (1, 1) superspace has the deformed relation

{θαi, θβj} = Cαβij, i = 1, 2. (2.30)

The deformation is equivalent to a ∗-product

(f ∗ g)(θ) = f(θ) exp

(
− 1

2

←−

∂

∂θα
i

Cαβ
ij

−→

∂

∂θβ
j

)
g(θ). (2.31)

In the harmonic superspace approach, the N = 2 gauge multiplet is described by a charge

2 analytic superfield V ++ = V ++MTM where TM are the Lie algebra generators. We will

consider U(N) in this paper. Under the deformed U(N) gauge group, the gauge multiplet

transforms as

δΛV ++ = −D++Λ + i[V ++ ∗, Λ] (2.32)

where Λ is an analytic superfield parameter. The action of N = 2 SYM is given by [37, 21]

SV =
1

2

∞∑

n=2

(−i)n

n
tr

∫
d12zdu1 · · · dun

V ++(z, u1) ∗ V ++(z, u2) ∗ · · · ∗ V ++(z, un)

(u+
1 u+

2 )(u+
2 u+

3 ) · · · (u+
n u+

1 )
, (2.33)

where z = (x, θα
i , θ̄α̇

i ).

As for the hypermultiplet, it can be described either by a complex analytic superfield

q+ with U(1) charge +1 or by a real analytic neutral superfield ω. These descriptions

are known to be related to each other via a duality [36] and one can restrict to either

description. Similar consideration applies in the deformed case. To construct the deformed

N = 4 SYM, let us consider q+ in the adjoint representation. The coupling of q+ to the

N = 2 gauge multiplet is given by

Sq = −
∫

dζduTr q̄+ ∗ (D++ + i[V ++ ∗, q+]). (2.34)

– 8 –
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where

dζ := d4xAd4θ−. (2.35)

The N = 4 SYM theory can be written down in terms of these N = 2 superfields. In

fact, by using an N = 2 gauge multiplet and an N = 2 hypermultiplet q+ in the adjoint

representation, the N = 4 action can be written as

SSYM = SV + Sq. (2.36)

For a generic non-singlet deformation (1.6) with generic b such that det b 6= 0, the theory

has N = (1, 0) supersymmetry.

The action (2.36) is written in terms of N = (1, 1) superfields. To rewrite it in terms

of component fields, one needs to substitute the component expansion of the superfield and

carry out the integrals in θ and u. As we remarked above, the component expansion of

an analytic superfield contains an infinite number of component fields and auxiliary fields.

However many of these can be gauged away. For example, one can utilize the infinite

degrees of freedom present in the analytic gauge parameter Λ to eliminate all the auxiliary

fields in the gauge superfield V ++. In the Wess-Zumino gauge, V ++
WZ has only a finite

number of physical components [21]. For the hypermultiplet superfield q+, the auxiliary

fields can be eliminated from the action using the classical equation of motion for q+. We

refer the reader to [21] for the case of a U(1) gauge group. The generalization to U(N) is

straightforward.

Although the resulting component action is manifest in supersymmetry, the gauge

transformations of the component fields are typically obscured and become non-canonical.

This was first observed in [12] for the deformed N = (1/2, 1/2) superspace. To obtain

component fields which have canonical gauge transformations, one must perform a field

redefinition. The redefined component fields admit canonical gauge transformations, but

their supersymmetry transformations are deformed. This can be worked out explicitly and

fully in the deformed N = (1/2, 1/2) case. However this becomes much more complicated

for the deformed N = (1, 1) case [27, 28, 23, 30]. Both the field redefinition and the

deformed supersymmetry transformations involve infinite series expansions in the defor-

mation parameter. Therefore although there is in principle no difficulty to write down the

deformed action explicitly, the procedure is rather involved and we will not carry out its

evaluation here.

2.3 Non-anticommutative SYM with N = (1/2, 0) supersymmetry

To construct a deformation of the N = 4 SYM theory with N = (1/2, 0) supersymmetry,

one can first write the N = 4 theory in terms of N = (1/2, 1/2) superfields and then

introduces non-anticommutative deformation to the N = (1/2, 1/2) superspace. In this

case, the RR-5 form FαβAB should be non-vanishing only for a 1 × 1 sub-block of the

indices for A,B.

This can be achieved by turning on further components in addition to those in (2.8)

which has the effect of further reducing the rank of FαβAB . Up to equivalence, the appro-

– 9 –
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priate RR 5-form configuration is

F01456 = −iF01789 = F23456 = −iF23789 = c,

F01786 = −iF01459 = F23786 = −iF23459 = c,

F01476 = iF01589 = F23476 = iF23589 = ic,

F01586 = iF01479 = F23586 = iF23479 = −ic,

(2.37)

where

c := F01456 (2.38)

is a constant. The matrix F takes the form

FαβAB = 24ic(τ3)αβMAB, (2.39)

where in this case MAB is given by

M := Σ456 + iΣ459 + i(Σ476 + iΣ479). (2.40)

Without loss of generality, we take the same identification of Σ-matrices as in (2.12)

to obtain

M = 4iUT M0U, (2.41)

where

M0 =




1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


 and U =

1√
2




1 1 0 0

−1 1 0 0

0 0 1 0

0 0 0 1


 . (2.42)

As before, the presence of U is a matter of choice of basis and can be absorbed by a

transformation of the spin fields. Therefore the configuration (2.37) of the RR 5-form flux

gives rise to a deformation that is governed by (2.39) with M of rank 1, and corresponds

to a non-anticommutative deformation of the N = (1/2, 1/2) superspace.

As mentioned above, the non-anticommutative deformed SYM theory can be obtained

easily using the deformed N = 1 superspace. The theory admits N = (1/2, 0) supersym-

metry. It is interesting to note that the additional terms in the action which deform the

theory have an interpretation as the Chern-Simons couplings of the D3-brane to a certain

constant RR 5-form background [38].

3. The supergravity solution

It is easy to check that the constant RR 5-form field strength (2.8) does not generate any

energy-momentum tensor in flat Euclidean space:

TMN = FMM1M2M3M4
FN

M1M2M3M4 − 1

10
gMNF 2 = 0. (3.1)

However this is no longer the case once one takes into account the backreaction of the N

D3-branes, which turns the flat spacetime to AdS5 × S5. Our goal now is to construct the

supergravity solution which would give rise to the components (2.8) for the RR 5-form field

on the worldvolume of the N D3-branes. Moreover, as a deformation, the solution should

reduce back to the original AdS5 × S5 background when the deformation is turned off.
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3.1 Supergravity dual for the N = (1, 0) case

In order to obtain the desired configuration (2.8) of the RR 5-form flux, we consider the

following configuration of intersecting D3-branes,

D31 ( 0 1 2 3 )

D32 ( 0 1 4 5 )

D32′ ( 0 1 7 8 )

D33 ( 2 3 4 5 )

D33′ ( 2 3 7 8 )

. (3.2)

Here D31 denotes the original N D3-branes; and we have introduced four additional sets

of D3-branes. Let us check supersymmetry. In type IIB string theory, the two supersym-

metries ε1, ε2 are of the same chirality. The set of N D3-branes imposes the condition

Γ0123ε1 = ε2. (3.3)

This condition relates the two supersymmetries and hence reduces the supersymmetry by

one half. Now introduce the other 4 sets of branes D32,D32′ , D33,D33′ . This imposes

additionally the conditions

Γ0145ε1 = ε2, Γ0178ε1 = ε2, Γ2345ε1 = ε2, Γ2378ε1 = ε2. (3.4)

The 4 conditions in (3.4) are not all independent. In fact there are only 3 independent

equations in (3.4) and (3.4) is equivalent to the following system:

Γ2378ε1 = ε2, Γ0123ε1 = −ε1, Γ4578ε1 = −ε1. (3.5)

Together with (3.3), we see that generically our set of intersecting branes preserves 1/16

of the type IIB supersymmetry, i.e. 2 supersymmetries are preserved. However in the near

horizon limit of the N D3-branes, the condition (3.3) is lifted and all the 32 supersymmetries

are preserved. Therefore, in this limit, we only have the conditions (3.5). The first of

these conditions gives ε2 once ε1 is solved. The second and the third conditions in (3.5)

impose 2 conditions on ε1 which means 4 supersymmetries are preserved. Moreover the

4 supersymmetries are chiral both in the 4-dimensional and in the 6-dimensional sense.

Hence we can denote the preserved supersymmetries by

εαA, α = 1, 2; A = 1, 2. (3.6)

This matches precisely with the preserved N = (1, 0) supersymmetries in the non-anti-

commutative SYM theory.

The metric of our intersecting branes system is given by

ds2 =

√
H3H3′

H1H2H2′
(dx2

0 + dx2
1) +

√
H2H2′

H1H3H3′
(dx2

2 + dx2
3) +

√
H1H2′H3′

H2H3
(dx2

4 + dx2
5)

+

√
H1H2H3

H2′H3′
(dx2

7 + dx2
8) +

√
H1H2H3H2′H3′(dx2

6 + dx2
9) (3.7)
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and the RR 5-form is

F = F0 + F1, (3.8)

where

F0 := d

(
1

H1

)
dx0123 + dual, (3.9)

F1 := d

(
1

H2

)
dx0145 + d

(
1

H2′

)
dx0178 + d

(
1

H3

)
dx2345 + d

(
1

H3′

)
dx2378 + dual. (3.10)

F0 is the RR 5-form sourced by the original set of N D3-branes, and F1 is sourced by the

additional sets of branes.

In order that no components of the RR 5-form other than those that are present in (2.8)

are activated, we choose the harmonic functions H2,H2′ ,H3,H3′ to be functions of x6 and

x9 only. Moreover to produce the complex structure of the RR 5-form in the equation (2.8),

it is necessary that H2 and H2′ depend on x6, x9 in a particular way:

H2 = H2(z), H2′ = H2′(z), H3 = H3(z), H3′ = H3′(z) (3.11)

where

z = x6 + ix9 (3.12)

is a complex variable. In other word, the branes D32,D32′ ,D33,D33′ are smeared and

have effectively a single transverse direction.

The equations of motion for this system of partially localised intersecting branes are

given by the curved space Laplace equations [39]

(H2H3∂
2
i + H2′H3′∂

2
m + ∂2

a)H1 = 0, (3.13)

∂a

(
H2

2

H2
3′

∂a

(
1

H2

))
= 0, (3.14)

∂a

(
H2

2′

H2
3

∂a

(
1

H2′

))
= 0, (3.15)

∂a

(
H2

3

H2
2′

∂a

(
1

H3

))
= 0, (3.16)

∂a

(
H2

3′

H2
2

∂a

(
1

H3′

))
= 0, (3.17)

where we have used i = 4, 5 to denote the indices in the x4, x5 directions and ∂2
i := ∂2

4 +∂2
5 is

the 2-dimensional flat Laplacian. Similarly ∂2
m := ∂2

7 +∂2
8 and ∂2

a := ∂2
6 +∂2

9 . Due to (3.11),

the equations (3.14)–(3.17) are satisfied immediately. Since the branes D32,D32′ ,D33,D33′

are smeared and have effectively a single transverse direction, the charge associated with

them is well defined only if F1 as given by (3.10) is well-defined at |z| = ∞. Moreover we

would like to reproduce the components of the RR flux precisely at the worldvolume of

the set of N D3-branes, i.e. at x4 = x5 = x6 = x7 = x8 = x9 = 0. We obtain the unique

solution

H2 = H2′ = H3 = H3′ =
1

1 + cz
. (3.18)
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In this case, the RR 5-form field strength (3.10) is actually constant and equal to (2.8)

everywhere.

Finally the equation for H1 reduces to
(

∂2
i + ∂2

m +
1

H2
2

∂2
a

)
H1 = 0. (3.19)

Naively one may try to treat c as a small parameter and solve (3.19) by solving the differen-

tial equation perturbatively. This is messy however. A much simpler way to solve (3.19) in

closed form is due to the following observation. We first rewrite the Laplacian ∂2
a = 4∂z∂z̄

where z̄ := x6 − ix9 and introduce

w :=

∫
H2

2dz =
z

1 + cz
, (3.20)

where we have chosen the integration constant such that w = 0 when z = 0. In terms of w

and z̄, the equation (3.19) can be rewritten as

(
∂2

i + ∂2
m + 4∂w∂z̄)H1 = 0. (3.21)

Except for the fact that w is not the complex conjugate of z̄, this is formally the same

Laplace equation as in the undeformed AdS5 × S5 case. This fact allows us to solve (3.21)

easily. We obtain

H1 = 1 +
R4

ρ4
, (3.22)

where
R4

α′2
:= 4πgsN = λ (3.23)

and

ρ2 := x2
i + x2

m + wz̄ (3.24)

It is

ρ2 = x2
i + x2

m +
zz̄

1 + cz
= x2

i + x2
m +

ww̄

1 − c̄w̄
(3.25)

Formally the solution H1 takes the same form as the undeformed one. That this is true is

because the differential algebra involved does not care about the complex structure. Using

the above results, the metric becomes

ds2 =
1√
H1

(dx2
0 + dx2

1 + dx2
2 + dx2

3) +
√

H1

(
dx2

4 + dx2
5 + dx2

7 + dx2
8 +

dzdz̄

(1 + cz)2

)
. (3.26)

It is clear that the singularity at z = −1/c is infinitely far away and so the supergravity

background is regular. We also remark that although the metric is invariant under SO(4)

rotations in xµ, µ = 0, 1, 2, 3, the Euclidean Lorentzian symmetry SO(4) is broken by the

RR 5-form. This agrees with the field theory.

Summarizing, our proposal is that the non-anticommutative SYM theory with deforma-

tion parameter (2.7), (2.8) is dual to the near horizon limit of the supergravity background

given by the intersecting brane system (3.2). The near horizon limit is taken with

x̃a := xa/α′ (3.27)

– 13 –



J
H
E
P
0
5
(
2
0
0
8
)
0
2
9

fixed in the α′ → 0 limit. Introducing

U := ρ/α′ (3.28)

and also scaling c such that

c̃ := α′c = α′F01456 (3.29)

is fixed in the α′ → 0 limit, we obtain the near horizon metric

ds2

α′
=

U2

√
λ

dx2
µ +

√
λ

U2

(
dx̃2

4 + dx̃2
5 + dx̃2

7 + dx̃2
8 +

dz̃d¯̃z

(1 + c̃z̃)2

)
, (3.30)

where z̃ := z/α′, and

U2 = x̃2
i + x̃2

m +
z̃ ¯̃z

1 + c̃z̃
. (3.31)

The RR 5-form is

F = F0 + F1, (3.32)

where

F0

α′2
= d

(
U4

λ

)
dx0123 + dual (3.33)

and

F1

α′2
= c̃(dx0dx1dx̃4dx̃5dx̃6+idx0dx1dx̃7dx̃8dx̃9+dx2dx3dx̃4dx̃5dx̃6 + idx2dx3dx̃7dx̃8dx̃9

+idx0dx1dx̃4dx̃5dx̃9+dx0dx1dx̃7dx̃8dx̃6+idx2dx3dx̃4dx̃5dx̃9+dx2dx3dx̃7dx̃8dx̃6)

+dual. (3.34)

Note that F1 is well defined in the same limit (3.29) where the metric has a well-defined

limit. Note also that the conditions (3.29) and (2.7) are indeed the same due to different

normalization.

We remark that the RR-flux is necessarily complex in order to generate the non-

anticommutative deformation. This is also reflected in the complexification of the metric

through (3.35). We also remark that the effect of turning on the deformation (2.8) in the

gauge theory is a simple replacement

dzdz̄ → dwdz̄ (3.35)

in the metric of the supergravity dual. It is remarkable that the effects of non-anti-

commutativity can be summarized nicely in such a compact form through a simple change

of variables. We will further comment on this in the discussion section.
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3.2 Supergravity dual for the N = (1/2, 0) case

To obtain the configuration (2.37) of the RR 5-form flux, we consider the following config-

uration of intersecting D3-branes,

D31 ( 0 1 2 3 )

D32 ( 0 1 4 5 )

D32′ ( 0 1 7 8 )

D33 ( 2 3 4 5 )

D33′ ( 2 3 7 8 )

D34 ( 0 1 4 7 )

D34′ ( 0 1 5 8 )

D35 ( 2 3 4 7 )

D35′ ( 2 3 5 8 )

. (3.36)

Here D31 denotes the original N D3-branes; and we have introduced eight additional sets

of D3-branes. The checking of supersymmetry is similar as before. We have from the

original N D3-branes the condition

Γ0123ε1 = ε2, (3.37)

and the conditions

Γ0145ε1 = ε2, Γ0178ε1 = ε2, Γ2345ε1 = ε2, Γ2378ε1 = ε2, (3.38)

Γ0147ε1 = ε2, Γ0185ε1 = ε2, Γ2347ε1 = ε2, Γ2385ε1 = ε2, (3.39)

from the additional sets of branes. In the near horizon limit, this is equivalent to

Γ2378ε1 = ε2, Γ0123ε1 = −ε1, Γ4578ε1 = −ε1 (3.40)

and

Γ48ε1 = ε1. (3.41)

The presence of the additional projection condition (3.41) reduces further the unbroken

supersymmetry to a single two-component chiral spinor and we can denote it as

εα, α = 1, 2. (3.42)

Therefore, in the near horizon limit, the intersecting branes configuration preserves 1/16

of the type IIB supersymmetry, i.e. 2 supersymmetries. This matches precisely with the

N = (1/2, 0) supersymmetries in the non-anticommutative SYM theory.

The metric of our intersecting branes system is given by

ds2 =

√
H3H3′H5H5′

H1H2H2′H4H4′
(dx2

0 + dx2
1) +

√
H2H2′H4H4′

H1H3H3′H5H5′
(dx2

2 + dx2
3)

+

√
H1H2′H3′H4′H5′

H2H3H4H5
dx2

4 +

√
H1H2′H3′H4H5

H2H3H4′H5′
dx2

5

+

√
H1H2H3H4′H5′

H2′H3′H4H5
dx2

7 +

√
H1H2H3H4H5

H2′H3′H4′H5′
dx2

8

+
√

H1H2H3H4H5H2′H3′H4′H5′(dx2
6 + dx2

9) (3.43)
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and the RR 5-form is

F = F0 + F1, (3.44)

where

F0 := d

(
1

H1

)
dx0123 + dual, (3.45)

F1 := d

(
1

H2

)
dx0145 + d

(
1

H2′

)
dx0178 + d

(
1

H3

)
dx2345 + d

(
1

H3′

)
dx2378 (3.46)

+d

(
1

H4

)
dx0147 + d

(
1

H4′

)
dx0158 + d

(
1

H5

)
dx2347 + d

(
1

H5′

)
dx2358 + dual.

F0 is the RR 5-form sourced by the original set of N D3-branes, and F1 is sourced by the

additional sets of branes. As before, we need to choose the functions H2, H2′ , H3, H3′ ,

H4,H4′ ,H5,H5′ to be functions of z = x6 + ix9 only.

The equations of motion for the system are:(
H2H3(H4H5∂

2
4 + H4′H5′∂

2
5) + H2′H3′(H4H5∂

2
7 + H4′H5′∂

2
8) + ∂2

a

)
H1 = 0, (3.47)

∂a

(
H4H4′

H5H5′

H2
2

H2
3′

∂a

(
1

H2

))
= 0, (3.48)

∂a

(
H4H4′

H5H5′

H2
2′

H2
3

∂a

(
1

H2′

))
= 0, (3.49)

∂a

(
H5H5′

H4H4′

H2
3

H2
2′

∂a

(
1

H3

))
= 0, (3.50)

∂a

(
H5H5′

H4H4′

H2
3′

H2
2

∂a

(
1

H3′

))
= 0, (3.51)

∂a

(
H2H2′

H3H3′

H2
4

H2
5′

∂a

(
1

H4

))
= 0, (3.52)

∂a

(
H2H2′

H3H3′

H2
4′

H2
5

∂a

(
1

H4′

))
= 0, (3.53)

∂a

(
H3H3′

H2H2′

H2
5

H2
4′

∂a

(
1

H5

))
= 0, (3.54)

∂a

(
H3H3′

H2H2′

H2
5′

H2
4

∂a

(
1

H5′

))
= 0, (3.55)

where a = 6, 9. The equations (3.48) - (3.55) are satisfied immediately. As before, since

the additional sets of branes are smeared and have effectively a single transverse direction,

the charge associated with them is well defined only if F1 as given by (3.46) is well-defined

at |z| = ∞. Moreover we want to reproduce the components (2.37) of the RR flux precisely

at the worldvolume of the set of N D3-branes. We obtain the unique solution

H2 = H2′ = H3 = H3′ =
1

1 + cz
,

H4 = H5 =
1

1 + icz

H4′ = H5′ =
1

1 − icz
, (3.56)
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The RR 5-form field strength (3.46) is constant and equal to (2.37) everywhere.

Finally, the equation for H1 reduces to

(
A∂2

i +
1

A
∂2

m +
1

H2
2H4H4′

∂2
a

)
H1 = 0, (3.57)

where i = 4, 7, m = 5, 8, a = 6, 9 here, and the function A is defined by

A :=
H4

H4′
=

1 − icz

1 + icz
. (3.58)

The differential equation (3.57) can be solved as follows. Introduce the change of variable

w :=

∫
H2

2H4H4′dz =
z

2(1 + cz)
+

1

2c
ln(1 + cz) − 1

4c
ln(1 + c2z2), (3.59)

the equation (3.57) for H1 becomes

(
A∂2

i +
1

A
∂2

m + 4∂w∂z̄

)
H1 = 0. (3.60)

This can be solved with the ansatz

H1 = 1 +
R4

ρ4
, (3.61)

where

ρ2 = B1(w)x2
i + B2(w)x2

m + C(w)z̄. (3.62)

The equation (3.60) is satisfied if the following conditions on the coefficient functions

B1(w), B2(w) and C(w) hold:

C ′ − 3C
B′1
B1

+
B2

A
− 2AB1 = 0, (3.63)

C ′ − 3C
B′2
B2

+ B1A − 2
B2

A
= 0, (3.64)

C ′ =
1

2

(
B1A +

B2

A

)
, (3.65)

where ′ here refers to differentiation with respect to w. It is easy to obtain from these

equations

(B1B2)
′ = 0, (3.66)

(
C

B1

)′
= A, (3.67)

(
C

B2

)′
=

1

A
. (3.68)

By rescaling ρ, we can set the integration constant of (3.66) to be 1 and we obtain

B1 = 1/B2. (3.69)

– 17 –



J
H
E
P
0
5
(
2
0
0
8
)
0
2
9

The equations (3.67) and (3.68) then give

CB1 =

∫
1

A
dw,

C

B1
=

∫
Adw, (3.70)

and hence

B1(w(z)) =
1

B2(w(z))
=

√
N(z)

D(z)
(3.71)

C(w(z)) =
√

N(z)D(z) (3.72)

where

N(z) :=

∫
1

A
dw, D(z) :=

∫
Adw. (3.73)

Substituting the definition (3.58) for A(z) and recalling (3.59), we have

N(z) =
1

4c

[
(1 − i) ln

(1 + cz)2

1 + c2z2
+ 2(1 + i) tan−1(cz) − 2(1 + i)

c2z2

(1 + cz)(i + cz)

]
, (3.74)

D(z) =
1

4c

[
(1 + i) ln

(1 + cz)2

1 + c2z2
+ 2(1 − i) tan−1(cz) − 2(1 − i)

c2z2

(1 + cz)(−i + cz)

]
.(3.75)

We also record the small c expansions

B1 = 1 + icz + O(c2z2), (3.76)

B2 = 1 − icz + O(c2z2), (3.77)

C = z(1 − cz + O(c2z2)), (3.78)

where it is clear that the solution reduces back to the undeformed one B1 = B2 = 1, C = z

when c → 0.

The near horizon limit is given as before by taking

x̃a := xa/α′, and U := ρ/α′ (3.79)

fixed in the α′ → 0 limit. We also scale c such that

c̃ := α′c, (3.80)

is fixed in the α′ → 0 limit. We obtain the near horizon metric

ds2

α′
=

U2

√
λ

dx2
µ +

√
λ

U2

(
1

Ã
(dx̃2

4 + dx̃2
5) + Ã(dx̃2

7 + dx̃2
8) +

1

(1 + c̃z̃)2(1 + c̃2z̃2)
dz̃d¯̃z

)
,

where we have defined

z̃ := z/α′, (3.81)

The function Ã is given by

Ã :=
1 − ic̃z̃

1 + ic̃z̃
(3.82)
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and

U2 = B1x̃
2
i + B2x̃

2
m +

C

α′
¯̃z, (3.83)

where, with a slight abuse of notation, the coefficients B1, B2 and C are obtained

from (3.71)–(3.75) by replacing cz with c̃z̃ everywhere. The RR 5-form is given by

F0/α
′2 = d(U4)dx0123/λ + dual, together with the constant components (2.37). This su-

pergravity solution is the dual for the non-anticommutative deformed N = 4 SYM with

N = (1/2, 0) supersymmetry.

4. Some consequences of the correspondence

In this section we will consider the effect of the non-anticommutative deformation on the

field theory, as predicted by the supergravity dual. We will concentrate on the duality with

N = (1, 0) supersymmetry since in this case the supergravity background as constructed

in section 3.1 is slightly simpler. In particular we will analyse the anomalous dimensions

of the field theory operators.

As already noted in section 3.1 the metric is formally identical to the AdS5×S5 metric

of the undeformed theory, subject to the replacement of z with w = z/(1 + cz). However,

there is one subtlety which we must first address. Since we have deformed the field theory

in a non-Hermitian way, the dual supergravity solution has been modified by a complex

deformation. The resulting effect is the replacement of z with w, but for c 6= 0, w 6= z.

We therefore must be careful when interpreting this geometry. In particular, we need to

identify the conformal boundary of the spacetime to relate bulk and boundary fields. Since

we are viewing this theory as a deformation of the N = 4 theory, we will use the standard

notion of the boundary as r → ∞ where r2 = xixi+xmxm+ |z|2. For c 6= 0 this differs from

the complex quantity, ρ2 = xixi +xmxm +wz which naturally appears in many quantities.

However, generically ρ diverges in the limit r → ∞.

We will now consider the correspondence between bulk scalar fields and field theory

operators. From the metric in equation (3.30) a scalar field K with mass m satisfies the

Laplace equation which implies that

(
λ

ρ4
∂2

µ + ∂2
i + ∂2

m + 4∂w∂z − m2

√
λ

ρ2

)
K = 0 (4.1)

As for the undeformed case, solutions of this equation which are independent of the “5-

sphere” are given by

K =
ξ∆

(xµxµ + ξ2)∆
(4.2)

where ξ = 1/ρ and ∆ = 2+
√

4 + m2. We will now see that, despite the distinction between

ρ and r, these states are dual to field theory operators with scaling dimension ∆. Therefore

there is a class of field theory operators whose spectrum is not deformed. Note however that

there are two possible ways in which the spectrum of operators can be deformed. There

are the other solutions to the ten-dimensional Laplace equation which have a dependence

on the “5-sphere”. Since this is deformed, the resulting spectrum of 5-dimensional masses
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will be changed. Also, the ten-dimensional spectrum of the full string theory is likely to

depend on the deformation, giving a dependence of m2 on c for string theory states.

We will now use the above solution K(ξ, xµ) to give the 5-dimensional bulk to boundary

propagator for these scalars and calculate the two-point function of the dual field theory

operators using standard techniques. So, a boundary field φ0(x
µ) is a source for the bulk

field configuration

φ(ξ, xµ) =

∫
d4x′

ξ∆

(|x − x′|2 + ξ2)∆
φ0(x

′) (4.3)

To calculate the two-point function we need to consider the dependence of the action

for the bulk scalar field on its “boundary values” φ0(x). This is

I =

∫
d4xdrd5Ω

1

2

√
g
(
∂Mφ∂NφgMN + m2φ2

)
(4.4)

=
1

2

∫
d4xd5Ω

(√
gφgrN∂Nφ

)
r→∞

(4.5)

where we have used integration by parts and the equation of motion for φ to perform the

integral over r.

We can now use the above relation between φ and φ0, together with the following

standard polar parametrisation of the coordinates

x6 + ix9 = r cos αeiφ1 (4.6)

x4 + ix5 = r sin α cos θeiφ2 (4.7)

x7 + ix8 = r sin α sin θeiφ3 (4.8)

to write the action explicitly in terms of the boundary sources φ0. Note that for fixed

angles, ξ → 0 as r → ∞. Explicitly, we find

√
g = r5ξ2H2 sin3 α cos α sin θ cos θ (4.9)

φ(ξ → 0, x) = ξ4−∆φ0(x) (4.10)

grN∂Nφ = − ∆

H2
2

(
(1 + (H2

2 − 1) sin2 α)∂rρ +
1

r
(H2

2 − 1) sin α cos α∂αρ

)
×

×
∫

d4x′
φ0(x

′)

|x − x′|2∆ (4.11)

where in the last result we have kept only the leading order terms as ξ → 0. Putting

everything together we find the expression for the two-point function of the operator dual

to the scalar field

〈O(x)O(x′)〉 =
δI

δφ0(x)δφ0(x′)

= −∆

2

1

|x − x′|2∆
∫

d5Ω sin3 α cos α sin θ cos θ
r5

ρ5H2
×

×
(

(1 + (H2
2 − 1) sin2 α)∂rρ +

1

r
(H2

2 − 1) sin α cos α∂αρ

)
(4.12)

=
C

|x − x′|2∆ (4.13)
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where the constant C is given by the integral in the previous line which is to be evaluated

in the limit r → ∞. Actually evaluating the integral is not straightforward since the large

r behaviour is different for α = 0 and α 6= 0, as can easily be seen by considering the

explicit expression for ρ2 = r2 sin2 α + r2 cos2 α/(1 + cr cos αeiφ1). Nevertheless the final

result clearly indicates that the anomalous dimension of the operator O is given by ∆.

Hence, for this class of operator, the only corrections to this dimension, as compared to

the undeformed theory, can come from the possible dependence of the bulk mass m on the

deformation parameter c.

Similar results will follow for field theory operators dual to other bulk fields. Due

to the nature of the deformation, we expect that the spectrum of BPS states is simply a

subset of the BPS states in the undeformed geometry. This would then correspond to the

prediction that the scaling dimensions of the chiral operators in the field theory are the

same as in the N = 4 theory, but that the rest of the theory will be deformed.

5. Discussions

In this paper we have constructed the supergravity duals for the non-anticommutative

deformed N = 4 supersymmetric Yang-Mills theory with N = (1, 0) and N = (1/2, 0)

supersymmetries. The supergravity solution consists of a metric which is a complex defor-

mation of the AdS5 × S5 metric, and a RR 5-form fields with complex constant compo-

nents. The fact that the metric is non-dilatonic suggests that the field theory coupling is

not renormalized. It will be interesting to check this explicitly.

Deformed by non-anticommutativity of the fermionic components of the superspace,

the non-anticommutative field theory breaks supersymmetry in a novel non-traditional way.

Nevertheless it preserves many remarkable properties of the usual supersymmetric field

theories. It will be interesting to analyse and understand more this kind of supersymmetric

breaking from the supergravity point of view.

The supergravity background dual to the non-anticommutative gauge theory is com-

plex. The imaginary nature of the RR 5-form is easy to understand and is a direct conse-

quence of solving the self-duality condition in Euclidean space. The imaginary nature of the

metric is more obscure. Although we have demonstrated that one can nevertheless extract

physical information such as the dimensions of operators in a more or less the standard

way using the bulk-to-boundary approach, it will be good to have a deeper understanding

on the imaginary nature of the metric. We recall that the complexity of the metric (and

the flux background) is a direct reflection of the fact that the non-anticommutative field

theory is non-Hermitian. With an analysis which is based on a reduction to the quan-

tum mechanics, it has been suggested [40] that non-anticommutative theory is unitary

in a more general sense [41]. This suggests something similar in the dual supergravity

description. As a first step, it is natural to try to find the corresponding phenomena in

the supergravity side when a similar reduction of degree of freedoms is performed. In the

mini-superspace approximation, one can work out the canonical Hamiltonian. Due to the

presence of complex components in the metric, the Hamiltonian is not real. We conjecture

that the Hamiltonian is pseudo-real in a sense similar to its field theory counterpart. This
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would provide a physical understanding of the nature of the complexity of the supergravity

background. We leave this interesting question for future analysis.
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A. Notation and convention

We denote by µ = 0, 1, 2, 3 the directions in the 4-dimensional Euclidean worldvolume

of the D3-branes, a = 4, 5, 6, 7, 8, 9 the transverse directions, and α, α̇ = 1, 2 the spinor

indices. We follow the notation of [34]. In particular, spinor indices are raised and lowered

by the ε-tensor with the convention ε12 = −ε12 = 1.

Decomposing SO(10) into SO(4) × SO(6), the ten-dimensional gamma matrices are

given by

Γµ
(10) = γµ ⊗ 1, Γa

(10) = γ5 ⊗ Γa, (A.1)

where

γµ =

(
0 σµ

σ̄µ 0

)
, Γa =

(
0 Σa

Σ
a

0

)
. (A.2)

Here the matrices (σµ)αβ̇ and (σ̄µ)α̇β are given by

σµ = (iτ1, iτ2, iτ3, 1),

σ̄µ = (−iτ1,−iτ2,−iτ3, 1), (A.3)

where τ i (i = 1, 2, 3) are the Pauli matrices. They satisfy the Clifford algebra

σµσ̄ν + σν σ̄µ = 2δµν1. (A.4)

The Lorentz generators are defined by

σµν =
1

4
(σµσ̄ν − σν σ̄µ), σ̄µν =

1

4
(σ̄µσν − σ̄νσµ). (A.5)

The matrices (σµν)αβ , (σ̃µν)α̇β̇ are symmetric in the spinor indices. Moreover σµν is self-

dual and σ̃µν is anti self-dual with respect to the µ, ν indices.

The gamma matrices for six-dimensional part are given by

Σa =
(
η3,−iη̄3, η2,−iη̄2, η1, iη̄1

)
,

Σ̄a = (−η3,−iη̄3,−η2,−iη̄2,−η1, iη̄1), (A.6)

where a = 4, . . . , 9. ηa
µν and η̄a

µν are the ’t Hooft symbols, which are defined by

σµν =
i

2
ηa

µντ
a, σ̄µν =

i

2
η̄a

µντ
a. (A.7)
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The matrices (A.6) satisfy the Clifford algebra

(Σa)AB(Σ̄b)BC + (Σb)AB(Σ̄a)BC = 2δabδA
C . (A.8)

The charge conjugation matrix is block diagonal in this basis

C = C(4) ⊗ C(6), (A.9)

where

C(4) =

(
−ǫαβ 0

0 −ǫα̇β̇

)
, C(6) =

(
0 −iδA

B

−iδB
A 0

)
. (A.10)
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